Linking entanglement and quantum phase transitions via density-functional theory
نویسندگان
چکیده
منابع مشابه
Scaling, Entanglement, and Quantum Phase Transitions
In this Letter we discuss the entanglement near a quantum phase transition by analyzing the properties of the concurrence for a class of exactly solvable models in one dimension. Entanglement can be classified in the framework of the scaling theory of phase transitions. There is a profound differences between the classical correlations, whose correlation lenght diverges at the phase transition,...
متن کاملQuantum phase transitions and bipartite entanglement.
We develop a general theory of the relation between quantum phase transitions (QPTs) characterized by nonanalyticities in the energy and bipartite entanglement. We derive a functional relation between the matrix elements of two-particle reduced density matrices and the eigenvalues of general two-body Hamiltonians of d-level systems. The ground state energy eigenvalue and its derivatives, whose ...
متن کاملMultipartite entanglement signature of quantum phase transitions.
We derive a general relation between the nonanalyticities of the ground state energy and those of a subclass of the multipartite generalized global entanglement (GGE) measure defined by de Oliveira et al. [Phys. Rev. A 73, 010305(R) (2006)] for many-particle systems. We show that GGE signals both a critical point location and the order of a quantum phase transition (QPT). We also show that GGE ...
متن کاملSpin-orbital entanglement near quantum phase transitions
Spin-orbital entanglement in the ground state of a one-dimensional SU(2)⊗SU(2) spin-orbital model is analyzed using exact diagonalization of finite chains. For S = 1/2 spins and T = 1/2 pseudospins one finds that the quantum entanglement is similar at the SU(4) symmetry point and in the spin-orbital valence bond state. We also show that quantum transitions in spin-orbital models turn out to be ...
متن کاملTheory of remote entanglement via quantum-limited phase-preserving amplification
We show that a quantum-limited phase-preserving amplifier can act as a which-path information eraser when followed by heterodyne detection. This “beam splitter with gain” implements a continuous joint measurement on the signal sources. As an application, we propose heralded concurrent remote entanglement generation between two qubits coupled dispersively to separate cavities. Dissimilar qubit-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2006
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.74.052335